miércoles, 25 de noviembre de 2015

1.5 Composición de funciones.

Composición de funciones

Objetivo

Fomentar la confianza y autonomía de las personas, al buscar contenido de matemáticas por internet, además de incluir las tic en el fortalecimiento del conocimiento adquirido en clases.





Si tenemos dos funciones: f(x) y g(x), de modo que el dominio de la 2ª esté incluido en el recorrido de la 1ª, se puede definir una nueva función que asocie a cada elemento del dominio de f(x) el valor de g[f(x)].
Veamos un ejemplo con las funciones f(x) = 2x y g(x) = 3x + 1.
Composición
(g f) (x) = g [f(x)] = g (2x) = 3 (2x) +1 = 6x + 1
(g o f) (1) = 6 · 1 + 1 = 7

Ejemplos

1Sean las funciones:
funciones
1Calcular (f g) (x)
operaciones
operaciones
2Calcular (g f) (x)
operaciones
operaciones
2funciones
1operaciones
2operaciones
3Funciones
1operaciones
2Operaciones

Dominio de la composición de funciones

D(g f) = {x ∈ D/ f(x) ∈ Dg}

Propiedades de la composición de funciones

1. Asociativa:
2. No es conmutativa.


No hay comentarios.:

Publicar un comentario